Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oecologia ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581444

RESUMO

Biodiversity loss is a global concern. Current technological advances allow the development of novel tools that can monitor biodiversity remotely with minimal disturbance. One example is passive acoustic monitoring (PAM), which involves recording the soundscape of an area using autonomous recording units, and processing these data using acoustic indices, for example, to estimate the diversity of various vocal animal groups. We explored the hypothesis that data obtained through PAM could also be used to study ecosystem functions. Specifically, we investigated the potential relationship between seven commonly used acoustic indices and insect leaf herbivory, measured as total leaf damage and as the damage from three major insect feeding guilds. Herbivory was quantified on seedlings in 13 plots in four subtropical forests in south China, and acoustic data, representing insect acoustic complexity, were obtained by recording the evening soundscapes in those same locations. Herbivory levels correlated positively with the acoustic entropy index, commonly reported as one of the best-performing indices, whose high values indicate higher acoustic complexity, likely due to greater insect diversity. Relationships for specific feeding guilds were moderately stronger for chewers, indicating that the acoustic indices capture some insect groups more than others (e.g., chewers include soniferous taxa such as crickets, whereas miners are mostly silent). Our findings suggest that the use of PAM to monitor ecosystem functions deserves to be explored further, as this is a research field with unexplored potential. Well-designed targeted studies could help us better understand how to best use novel technologies to monitor ecosystem functions.

4.
Bot Stud ; 63(1): 3, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35142915

RESUMO

BACKGROUND: Seed viability testing is essential in plant conservation and research. Seed viability testing determines the success of ex-situ conservation efforts, such as seed banking but commonly testing protocols of orchids lack consistency and accuracy, therefore, there is a need to select an appropriate and reliable viability test, especially when conducting comparative studies. Here, we evaluated the suitability of three seed viability tests, Evans blue test (EB), Fluorescein diacetate test (FDA) and Tetrazolium test (TTC), with and without sterilization, on seeds of 20 orchid species, which included five epiphytes and fifteen terrestrials, using both fresh seeds and seeds stored at - 18 ºC for 6 to 8 years. RESULTS: We found that sterilization and lifeform of seeds affected seed viability across all tests but the storage time was not an influential factor. Sterilization negatively affected seed viability under EB and FDA test conditions but increased the detection of viable seeds in the TTC test in both epiphytic and terrestrial species. The EB test, when administered without sterilization provided the highest viability results. Being non-enzymatic unlike TTC and FDA tests, as expected, the EB test was the most reliable with similar results between sterilized and not sterilized seeds for most epiphytic and terrestrial species as well as when compared between groups. CONCLUSIONS: The lifeform of the species and seed sterilization prior to testing are important influential factors in orchid seed viability testing. Since EB test was found to be reliable we recommend the EB test for seed viability assessment in orchids rather than the less reliable but commonly used TTC test, or the FDA test, which require more expensive and sophisticated instrumentation. Since storage time was not an influential factor in orchid seed viability testing, the recommendations of this study can be used for both fresh as well as long-term stored orchid seeds. This is helpful for research and especially for conservation measures such as seed banking. However, due to the species specificity of the bio-physiology of orchids, we call for comprehensive viability test assessment in the hyper diverse orchid family to be extended to a greater number of species to facilitate efficient conservation and research.

5.
Ambio ; 51(6): 1474-1484, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34962639

RESUMO

As the two largest countries by population, China and India have pervasive effects on the ecosphere. Because of their human population size and long international boundary, they share biodiversity and the threats to it, as well as crops, pests and diseases. We ranked the two countries on a variety of environmental challenges and solutions, illustrating quantitatively their environmental footprint and the parallels between them regarding the threats to their human populations and biodiversity. Yet we show that China and India continue to have few co-authorships in environmental publications, even as their major funding for scientific research has expanded. An agenda for collaboration between China and India can start with the shared Himalaya, linking the countries' scientists and institutions. A broader agenda can then be framed around environmental challenges that have regional patterns. Coordinated and collaborative research has the potential to improve the two countries' environmental performance, with implications for global sustainability.


Assuntos
Ciência Ambiental , Biodiversidade , China , Humanos , Índia
6.
Front Plant Sci ; 12: 754207, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34912356

RESUMO

Exposure to high-temperature stress (HTS) during early regeneration in plants can profoundly shape seed germination, seedling growth, and development, thereby providing stress resilience. In this study, we assessed how the timing of HTS, which was implemented as 8 h in 40°C, could affect the early regeneration stages and phytohormone concentration of four hemiepiphytic (Hs) and four non-hemiepiphytic (NHs) Ficus species. Their seed germination, seedling emergence, and seedling survival probabilities and the concentrations of three endogenous phytohormones, abscisic acid (ABA), indole-3-acetic acid (IAA), and salicylic acid (SA) were assessed after HTS imposed during imbibition, germination, and emergence. In both groups, seeds were more sensitive to HTS in the early regeneration process; stress experienced during imbibition affected emergence and survival, and stress experienced during germination affected subsequent emergence. There was no effect from HTS when received after emergence. Survival was highest in hemiepiphytes regardless of the HTS treatment. The phytohormones showed growth form- and regeneration stage-specific responses to HTS. Due to the HTS treatment, both SA and ABA levels decreased in non-hemiepiphytes during imbibition and germination; during germination, IAA increased in hemiepiphytes but was reduced in non-hemiepiphytes. Due to the HTS treatment experienced during emergence ABA and IAA concentrations were greater for hemiepiphytes but an opposite effect was seen in the two growth forms for the SA concentration. Our study showed that the two growth forms have different strategies for regulating their growth and development in the early regeneration stages in order to respond to HTS. The ability to respond to HTS is an ecologically important functional trait that allows plant species to appropriately time their seed germination and seedling development. Flexibility in modulating species regeneration in response to HTS in these subtropical and tropical Ficus species could provide greater community resilience under climate change.

7.
J Anim Ecol ; 90(2): 460-470, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33080048

RESUMO

A single adverse environment event can threaten the survival of small-ranged species while random fluctuations in population size increase the extinction risk of less-abundant species. The abundance-range-size relationship (ARR) is usually positive, which means that smaller-ranged species are often of low abundance and might face both problems simultaneously. The ARR has been reported to be negative on tropical islands, perhaps allowing endemic species in such environments to remain extant. But there is a need to understand how endemism and land-use interact to shape ARR. Using 41 highly replicated transects along the full elevational gradient of Sri Lanka, we determined the following: (a) the direction of ARR, (b) if endemism affects ARR and (c) if land-use (rainforest, buffer and agriculture) changes ARR differently for endemics and non-endemics. Additionally, (d) we identified endemics that had both lower abundances and smaller range sizes, and ranked them from most threatened (specific to rainforests) to least threatened using a weighted-interaction nestedness estimator. (a) We found a positive relationship between species abundances and range size. This positive ARR was maintained among endemic and non-endemic species, across land-use types and at local and regional scales. (b) The ARR interacted with endemicity and land-use. Endemics with smaller range sizes had higher abundances than non-endemics, and particularly higher in rainforests compared to agriculture. In contrast, species with larger range sizes had similar abundances across endemicity and land-use categories. Many endemics with smaller range sizes are globally threatened; therefore, higher abundances may buffer them from extinction risks. (c) Nine (29%) endemics had both below average abundance and elevational range size. The nestedness estimator ranked the endemics Sri Lanka Whistling Thrush Myophonus blighi, Red-faced Malkoha Phaenicophaeus pyrrhocephalus, Sri Lanka Thrush Zoothera imbricata and White-faced Starling Sturnornis albofrontus as the four most vulnerable species to local extinction risk, which corresponds to their global extinction risk. We demonstrate that ARR can be positive on tropical islands, but it is influenced by endemism and land-use. Examining shifts in ARR is not only important to understand community dynamics but can also act as a tool to inform managers about species that require monitoring programmes.


Assuntos
Biodiversidade , Aves , Animais , Ecossistema , Ilhas , Densidade Demográfica , Floresta Úmida
8.
Tree Physiol ; 41(3): 358-370, 2021 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-33238308

RESUMO

Mechanisms for surviving water and temperature stress in epiphytes are essential adaptations for successful regeneration in forest canopies. Hemiepiphytes start their life cycle as epiphytes, eventually establishing aerial root connections to the ground. This strategy allows for greater light capture, while benefitting from minimized risk of fire, flooding and damage by terrestrial herbivores, but exposes the vulnerable seedling stage to heat and drought stress. However, the response to temperature and water stress during early regeneration in hemiepiphytes is not known. In this study, we tested the effect of temperature (15/5, 25/15 and 35/25 °C; day/night diurnal variation) and water availability, as substrate moisture (0.00, -0.20 and -0.35 MPa) and water vapor (18.5-99.5% relative humidity), on seed germination, seedling emergence and survival in six hemiepiphytic and nine non-hemiepiphytic Ficus species. Under high-temperature conditions (35/25 °C), hemiepiphytes had higher gemination and seedling survival, achieved peak germination slower and extended germination. Greater water stress (-0.35 MPa) in the growth substrate resulted in higher germination of non-hemiepiphytes; hemiepiphytes, in contrast, took a shorter time to complete germination, but had higher seedling emergence and survival. Hemiepiphytes germinated at 99.5% relative humidity more readily compared with non-hemiepiphytes. These findings provide the first comprehensive evidence that hemiepiphytic Ficus species are better adapted to drier and warmer conditions during the critical transition from seed to seedling. Through greater flexibility in achieving peak germination and duration of regeneration activity, hemiepiphytes modulate their recruitment process to be more resilient under abiotic stressors. This may allow them to be more successful in regenerating in forest canopies under ambient conditions that are transient. These results support previous work showing greater drought tolerance of hemiepiphytic Ficus species in larger size classes and extend this finding to show that physiological adaptations for drought and heat tolerance start from the early seedling emergence stage.


Assuntos
Ficus , Água , Germinação , Plântula , Sementes , Temperatura
9.
Oecologia ; 195(3): 575-587, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33251556

RESUMO

Insect herbivory in natural forests is of critical importance in forest regeneration and dynamics. Some hypotheses that have been proposed to explain variation in leaf consumption by herbivores focus on biotic interactions, while others emphasize the role of the abiotic environment. Here, we evaluated the relative importance of both biotic and abiotic factors in explaining leaf damage on seedlings. We measured the percentage of leaf damage in the understory seedling community of four subtropical forests, covering an elevation gradient from 400 to 1850 m asl. We used fine-scale abiotic (elevation, canopy openness, topography, soil fertility) and biotic (seedling height and number of leaves, neighborhood composition) variables to determine both direct and indirect relationships using linear mixed models and structural equation modeling. We also explored the consistency of our results across the four forests. Taller seedlings experienced higher herbivore damage. Herbivory increased at higher elevations and in areas with higher light availability in one forest, but not in the other three. We found no evidence supporting the effects of biotic interactions on herbivory. Our results, at all levels of analysis, are consistent with the plant apparency theory, which posits that more apparent plants suffer greater attack. We did not find support for hypotheses stressing the role of neighborhood composition on herbivory. Similarly, the abiotic environment does not seem to influence herbivory significantly. We argue that plant apparency, rather than other biotic and abiotic factors, may be the most important predictor of leaf damage in the seedling communities of subtropical forests.


Assuntos
Herbivoria , Plântula , Animais , Florestas , Folhas de Planta , Plantas , Árvores
11.
Appl Plant Sci ; 7(4): e01241, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31024784

RESUMO

PREMISE OF THE STUDY: The relationship between tree species abundance and diversity and soil chemistry has been studied in several ecosystems and at different spatial scales. However, species-specific assessments have mainly been conducted in temperate ecosystems and in monospecific settings, calling for studies from diverse, mixed forests from different ecosystems. METHODS: In a subtropical forest in southern China, under four dominant tree canopy species (Lithocarpus chintungensis, Castanopsis wattii, Schima noronhae, and Manglietia insignis), we assessed species' effect on inter- and intraspecific percentages of litter mass loss, and the effect of species on soil nutrients and soil microbial biomass. RESULTS: Our results show significant differences in litter decomposition for all four species; however, the percentage of litter mass loss was stable under different species. Microbial biomass and soil nutrients presented strong differences under different tree species. Species-specific differences in soil characteristics were seen for carbon-nitrogen-phosphorus relationships. Surprisingly, the correlations between carbon and phosphorus and between nitrogen and phosphorus showed opposite slopes in soils collected under different tree species. DISCUSSION: Our results provide insights into the importance of tree species identity in providing variety to ecosystem processes occurring on the forest floor. We recommend this methodological approach-combining analysis of litter decomposition, soil nutrient concentrations, and microbial biomass-when dealing with species-rich forests.

12.
Ecol Evol ; 9(24): 14261-14272, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31938517

RESUMO

Seedling recruitment following a masting event, where more fruits are produced in synchrony and intermittently compared with other species, plays a crucial role in determining species diversity and community structure. Such seedling recruitment can be superabundant, but followed by high mortality shortly thereafter. Differences in biotic factors such as seedling characteristics, competition, and herbivory, and microsite-specific abiotic factors could determine seedling fate in space and time.In a subtropical forest in south China, for 2 years using censuses conducted every 1-2 months, we monitored 40 seed traps and 120, 1 m2 quadrats in five 1-ha plots located from 1,400 to 1,850 m asl for the masting maple species, Acer campbellii subsp. sinense (Pax) P.C.DeJong. We measured biotic-conspecific and heterospecific seedling density, species richness, herbivory, seedling height, and leaf number-and abiotic-canopy openness, slope, and aspect-factors to assess drivers of seedling survival and evaluated A. campbellii subsp. sinense presence in the soil seed bank (SSB).The masting seed dispersal peak and seedling emergence peak occurred between October 2017 and January 2018, and May 2018, respectively. Of 688 selected seedlings, mortality was 92.7% within one year. No seeds were observed in the SSB. Seedling height and leaf number positively affected seedling survival, while seed placement as measured by aspect also showed effects on survival. Conspecific and heterospecific density and herbivory did not show any clear effect. Higher probabilities of seedling survival were found in areas with larger canopy openness (≥12% canopy gap size) and in steeper microsites (≥35°). Synthesis. Masting is mainly studied as a population-level phenomenon from the fruiting tree perspective. Our study of individual seedling fate revealed that intrinsic biotic factors and seed placement were key drivers of survival. Although biotic determinants such as competition from conspecifics or heterospecifics or herbivory did not determine survival, their ubiquitous presence may be an underlying equalizer in community dynamics where seedlings that overcome biotic pressures, if placed at the right microsite, are at better odds at being recruited to the next life history stages.

13.
Ecol Evol ; 8(1): 286-295, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29321871

RESUMO

Karst hills, that is, jagged topography created by dissolution of limestone and other soluble rocks, are distributed extensively in tropical forest regions, including southern parts of China. They are characterized by a sharp mosaic of water and nutrient availability, from exposed hilltops with poor soil development to valleys with occasional flooding, to which trees show species-specific distributions. Here we report the relationship of leaf functional traits to habitat preference of tropical karst trees. We described leaf traits of 19 tropical tree species in a seasonal karst rainforest in Guangxi Province, China, 12 species in situ and 13 ex situ in a non-karst arboretum, which served as a common garden, with six species sampled in both. We examined how the measured leaf traits differed in relation to species' habitat affinity and evaluated trait consistency between natural habitats vs. the arboretum. Leaf mass per area (LMA) and optical traits (light absorption and reflectance characteristics between 400 and 1,050 nm) showed significant associations with each other and habitats, with hilltop species showing high values of LMA and low values of photochemical reflectance index (PRI). For the six species sampled in both the karst forest and the arboretum, LMA, leaf dry matter content, stomatal density, and vein length per area showed inconsistent within-species variations, whereas some traits (stomatal pore index and lamina thickness) were similar between the two sites. In conclusion, trees specialized in exposed karst hilltops with little soils are characterized by thick leaves with high tissue density indicative of conservative resources use, and this trait syndrome could potentially be sensed remotely with PRI.

14.
Biol Lett ; 13(5)2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28539462

RESUMO

Large tracts of tropical rainforests are being converted into intensive agricultural lands. Such anthropogenic disturbances are known to reduce species turnover across horizontal distances. But it is not known if they can also reduce species turnover across vertical distances (elevation), which have steeper climatic differences. We measured turnover in birds across horizontal and vertical sampling transects in three land-use types of Sri Lanka: protected forest, reserve buffer and intensive-agriculture, from 90 to 2100 m a.s.l. Bird turnover rates across horizontal distances were similar across all habitats, and much less than vertical turnover rates. Vertical turnover rates were not similar across habitats. Forest had higher turnover rates than the other two habitats for all bird species. Buffer and intensive-agriculture had similar turnover rates, even though buffer habitats were situated at the forest edge. Therefore, our results demonstrate the crucial importance of conserving primary forest across the full elevational range available.


Assuntos
Aves , Agricultura , Animais , Biodiversidade , Conservação dos Recursos Naturais , Ecossistema , Florestas , Árvores , Clima Tropical
15.
Tree Physiol ; 37(3): 389-401, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28100712

RESUMO

Mangroves in hypersaline coastal habitats are under constant high xylem tension and face great risk of hydraulic dysfunction. To investigate the relationships between functional traits and salt management, we measured 20 hydraulic and photosynthetic traits in four salt-adapted (SA) and two non-SA (NSA) mangrove tree species in south China. The SA species included two salt secretors (SSs), Avicennia marina (Forsskål) Vierhapper and Aegiceras corniculatum (L.) Blanco and two salt excluders (SEs), Bruguiera gymnorrhiza (L.) Savigny and Kandelia obovata (L.) Sheue et al. The two NSA species were Hibiscus tiliaceus (L.) and Pongamia pinnata (L.) Merr. Extremely high xylem cavitation resistance, indicated by water potential at 50% loss of xylem conductivity (Ψ50; -7.85 MPa), was found in SEs. Lower cavitation resistance was observed in SSs, and may result from incomplete salt removal that reduces the magnitude of xylem tension required to maintain water uptake from the soil. Surprisingly, the NSA species, P. pinnata, had very low Ψ50 (-5.44 MPa). Compared with NSAs, SAs had lower photosynthesis, vessel density, hydraulic conductivity and vessel diameter, but higher sapwood density. Eight traits were strongly associated with species' salt management strategies, with predawn water potential (ΨPD) and mean vessel diameter accounting for 95% flow (D95) having the most significant association; D95 separated SAs from NSAs and SEs had the lowest ΨPD. There was significant coupling between hydraulic traits and carbon assimilation traits. Instead of hydraulic safety being compromised by xylem efficiency, mangrove species with higher safety had higher efficiency and greater sapwood density (ρSapwood), but there was no relationship between ρSapwood and efficiency. Principal component analysis differentiated the species of the three salt management strategies by loading D, D95 and vessel density on the first axis and loading ΨPD, Ψ50 and water potential at 12% loss of xylem conductivity (Ψ12), ρSapwood and quantum yield on the second axis. Our results provide the first comparative characterization of hydraulic and photosynthetic traits among mangroves with different salt management strategies.


Assuntos
Avicennia/fisiologia , Hibiscus/fisiologia , Folhas de Planta/fisiologia , Caules de Planta/fisiologia , Pongamia/fisiologia , Primulaceae/fisiologia , Rhizophoraceae/fisiologia , Xilema/fisiologia , China , Árvores , Água/fisiologia
16.
Proc Biol Sci ; 282(1811)2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26156772

RESUMO

Conservation biology is increasingly concerned with preserving interactions among species such as mutualisms in landscapes facing anthropogenic change. We investigated how one kind of mutualism, mixed-species bird flocks, influences the way in which birds respond to different habitat types of varying land-use intensity. We use data from a well-replicated, large-scale study in Sri Lanka and the Western Ghats of India, in which flocks were observed inside forest reserves, in 'buffer zones' of degraded forest or timber plantations, and in areas of intensive agriculture. We find flocks affected the responses of birds in three ways: (i) species with high propensity to flock were more sensitive to land use; (ii) different flock types, dominated by different flock leaders, varied in their sensitivity to land use and because following species have distinct preferences for leaders, this can have a cascading effect on followers' habitat selection; and (iii) those forest-interior species that remain outside of forests were found more inside flocks than would be expected by chance, as they may use flocks more in suboptimal habitat. We conclude that designing policies to protect flocks and their leading species may be an effective way to conserve multiple bird species in mixed forest and agricultural landscapes.


Assuntos
Biodiversidade , Aves/fisiologia , Ecossistema , Comportamento Alimentar , Agricultura , Animais , Florestas , Índia , Sri Lanka , Clima Tropical
17.
Mycorrhiza ; 24(7): 487-99, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24563211

RESUMO

Orchid conservation efforts, using seeds and species-specific fungi that support seed germination, require the isolation, identification, and germination enhancement testing of symbiotic fungi. However, few studies have focused on developing such techniques for the epiphytes that constitute the majority of orchids. In this study, conducted in Xishuangbanna Tropical Botanical Garden, Yunnan, China, we used seeds of Dendrobium aphyllum, a locally endangered and medicinally valuable epiphytic orchid, to attract germination promoting fungi. Of the two fungi isolated from seed baiting, Tulasnella spp. and Trichoderma spp., Tulasnella, enhanced seed germination by 13.6 %, protocorm formation by 85.7 %, and seedling development by 45.2 % (all P < 0.0001). Epulorhiza, another seed germination promoting fungi isolated from Cymbidium mannii, also enhanced seed germination (6.5 %; P < 0.05) and protocorm formation (20.3 %; P < 0.0001), but Trichoderma suppressed seed germination by 26.4 % (P < 0.0001). Tulasnella was the only treatment that produced seedlings. Light increased seed imbibition, protocorm formation, and two-leaved seed development of Tulasnella inoculated seeds (P < 0.0001). Because the germination stage success was not dependent on fungi, we recommend that Tulasnella be introduced for facilitating D. aphyllum seed germination at the protocorm formation stage and that light be provided for increasing germination as well as further seedling development. Our findings suggest that in situ seed baiting can be used to isolate seed germination-enhancing fungi for the development of seedling production for conservation and reintroduction efforts of epiphytic orchids such as D. aphyllum.


Assuntos
Basidiomycota/fisiologia , Dendrobium/crescimento & desenvolvimento , Dendrobium/microbiologia , Germinação , Sementes/crescimento & desenvolvimento , Simbiose , Trichoderma/fisiologia , Basidiomycota/crescimento & desenvolvimento , Basidiomycota/isolamento & purificação , China , Dendrobium/fisiologia , Sementes/microbiologia , Trichoderma/crescimento & desenvolvimento , Trichoderma/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...